SIEMENS

Automated Test
Execution with
Polarion

Contents

Run external automated tests from Polarion i i ittt it e 1-1

Automated Test Execution with Polarion 3

Chapter 1: Run external automated tests from Polarion

ALM|QA

This document outlines how to set up an environment to launch test automation scripts directly
from Polarion, and automatically import all external test results for use by the relevant reports and
metrics. You may opt to run test automation scripts explicitly, or schedule a job that runs them

at a future time, and/or periodically.

When using Polarion for such a scenario, an external automated testing tool must be available and
accessible to your network, and its role must be clearly defined. The role of the external automated
testing tool is to receive a set of data representing what will be tested, and how it will be tested.
Polarion typically holds this information and its role is to deliver it to the external tool in its environment.

Basic setup concept

The first thing to consider is the basic configuration between Polarion and a Test Automation Server
(TAS), including how to invoke a build tool to enable the exchange of test data with automated tests,
using any of a variety of commercial and open-source test automation engines.

h&mﬁﬁmwhﬁﬂmﬂ 5

Test Automation

Polarion : :
. xUnit Result File

Server Server

The above graphic shows the basic concept of data exchange between a Polarion instance and a
TAS. In most cases, these servers are separate machines. It is important that the TAS contains some
kind of Test Agent that receives incoming requests from the initiating tool — that is, Polarion. This

is important because the running of tests often invokes complex third-party tools, which must be
available in the testing environment. The Test Agent is what needs to be called from Polarion, and
provided with all the information required to have the external testing tool perform tests.

Invoke a build

To start the process of sharing test information between Polarion and a TAS, it is necessary to invoke
a build process using one of the following tools:

Automated Test Execution with Polarion 11

https://polarion.plm.automation.siemens.com/products/licensing

Chapter 1: Run external automated tests from Polarion

+ Jenkins Integration Server

* Hudson
« ANT
e Maven

* Polarion builds

Exchange test data

Once you have invoked the appropriate build tool, you will need to create and run the appropriate
scripts for the following operations:

1. Fetch test cases from Polarion for what is to be tested.
2. Fetch related test scripts that must be run.

3. Send tests to the TAS.

Trigger testing
Polarion Server
I H £ [_..-'-""'_._._._-—__-_-_‘_""‘-u\
[Build: Test Automation | subversion
:)
+ -
executionLogic.sh Test Automation
l- Server
TestCase 1 l
Texjs |
"“--_,___l_‘_.__,_,.ﬂ-"'

executionlogic.sh

1) Fetch Test Cases
2) Fetch Related Test Scripts
3) Send Tests To Test Automation Server

The running or performing of the actual tests is the responsibility of the TAS. After Polarion has
supplied the test data and started the testing process, it simply waits for results to be returned. The
results themselves are generated by the TAS, and must be copied to a local or network location
accessible to Polarion once testing is complete.

1-2 Automated Test Execution with Polarion

Run external automated tests from Polarion

Receive test results

Once automated tests are completed, the results must somehow be transferred back to Polarion, and
the relevant test case Work Items must be updated.

Polarion Server

lob: Test Results Import | Lot EIlE Sy=ter Test Automation

~ - / Server

xUnit_results.xml *

Test Run ¥Unit_results.xml

The diagram above shows the required architecture for the reimporting of test results. You can see
that the file xUnit_results.xml is originally created on the TAS in a valid xUnit format. The TAS has
finished submitting the results to a location Polarion can access. This may be a network share or
just a folder on the Polarion server’s file system. There is a separate job, which is commonly run
every few minutes or hours. The job checks if new XML results are available in the specified location.
The job creates a new Test Run for every valid XML file found in the specified location. Finally, the
job deletes the XML test result files.

Example using Jenkins

The information below outlines a process for integrating Polarion with Jenkins to fetch test cases, and
automatically import test results generated by Jenkins.

Prerequisites:

» Jenkins must be set up, running, and accessible online. Example URL: http://myjenkins

* Polarion must be set up, an ALM or QA license must be installed and available, and the server
must be accessible online. Example URL: http://mypolarion

* A project must exist on the Polarion server that contains a set of Work ltems representing test
cases to be tested by the automated tests run on the Jenkins server.

This example is based on the E-Library demo project that ships with Polarion. If your administrator
opted not to install demo projects on your instance, you might consider obtaining and installing an
evaluation copy of Polarion. Demo projects are also accessible on the Polarion ALM Test Drive
server, but you cannot modify anything there. This example will demonstrate how to use a Jenkins
project to host the build automation procedure, build the E-Library project, and import the test results
generated by Jenkins into Polarion.

Automated Test Execution with Polarion 1-3

http://almdemo.polarion.com
http://almdemo.polarion.com

Chapter 1: Run external automated tests from Polarion

%= The E-Library build process is parametrized by the exclude-test-pattern variable.
Typically you will not have this situation, but in the case of E-Library you need to pass

that variable.

The following figure shows the setup window in Jenkins. Note the Subversion repository URL
pointing to the project URL in Polarion.

1-4 Automated Test Execution with Polarion

Run external automated tests from Polarion

(- = ﬁ _lni:alh.ust::J:su_ul.'.;.':,,.'u'-_-_-.J..:__.:-,_) = .!'*h _;- # B~ O

® Jenkins

Jenkins elibrary configuration

Project narme elibrary

t Back to Dashboard
Status

Description

T
_;' Changes Preview
{._"-'3.- Workspace [J piscard old Builds (7]

Build Mow This build is pararmeterized @

String Parameter

® Delete Project
& Confiqure

Marne exclude tests pattern

® e 88

Modules
=T, Default Value none
Build History (trend) Bescriikion
#7 Sep 10,2012 12:17:58 P
. E5 Sep 10, 2012 12:16:03 PM
W #4 Sep 10, 2012 11:55:07 AM | Delete |
@ #3 Sep 10, 2012 11:55:01 AM
@ #2 Sep10,201211:51:48 AM Add Deracetes >
@ #1 Sep10,201211:51:47 aM L] Disable Build ; — @
] (Mo new builds will be executed until the project is re-enabled.)
EJ RsSS for all BY RSS for failures [] Execute concurrent builds if necessary)

Advanced Project Options

Advanced
Source Code Management
O cvs
'G one
® subversion
Modules Repository URL http ://localhost/repo/Demo Projects/elibrary /trunk)
Local module directory (optional) | @
Add more booatons...
Check-out Strategy | Use "svn update' as much as possible ™
I Save || Apply |

Automated Test Execution with Polarion 1-5

Chapter 1: Run external automated tests from Polarion

Now it is necessary to set up the configuration for importing test results to Polarion,

1. Create a folder on the file system of the Polarion server to store imported test results. Example:
c:/polarion/data/import-test-results/elibrary/jenkins-unit

1 unit-jenkins g|
"

File Edit ‘Miew Favorites Tools Help

GBack .~ ir / ! Search [Folders m*

Address | C:\Polariontdatalimpart-test-resulksielibr aryunit-jenkins] a G0
Folders x
@ Desklop)

+ J_‘| M Docurnents
= _é My Compuker
= =@ Local Disk (3
+) 25950fa0dd4497bZbb4bacS FedfS
+ |) Documents and Settings
+ | eclipse
=1 |_) Paolarion
+ () bundled
I chart
=) data
+ () BIR
+ 1) it
=) import-test-results
= | elibrary
=}

This folder must be shared so that it can be accessed from the Jenkins server.

2. Create a new Polarion job to watch the shared folder and import test results when they appear in
the folder. See the following code example.

<job id="xUnitFileImport” name="Import Elibrary Tests Results” scope="system”>
<path>C:\Polarion\data\import-test-results\elibrary\unit-jenkins</path>

<project>elibrary</project>
<userAccountVaultKey>xUnitFileImportUser</userAccountVaultKey>
<maxCreatedDefects>10</maxCreatedDefects>
<maxCreatedDefectsPercent>5</maxCreatedDefectsPercent>
<templateTestRunId>JUnit Build Test</templateTestRunId>
<idRegex> (.*) .xml</idRegex>
<groupIdRegex>(.*) .*.xml</groupIdRegex>

</job>

For the purposes of this example, Polarion and Jenkins are running on the same server. In a
production setup, you would use different network drives.

3. Configure a Jenkins post-action to copy test results to the test results folder on the Polarion
system, created in Step 1. In this example, a Windows command is used to copy the results.
You can also use an ANT-post build action, and, for example, merge the test results into one
file using http://ant.apache.org/manual/Tasks/junitreport.html.

1-6 Automated Test Execution with Polarion

http://ant.apache.org/manual/Tasks/junitreport.html

Run external automated tests from Polarion

cd target\surefire-reports
for $%F IN (*.xml) DO copy %%F C:\Polarion\data\import-test-results\elibrary\unit]

[rirefox mEX

6 5 localhost: 2050/ job) elibraryfconfigure c ;| 'ﬁ ﬂ - & -

lenkins elibrary configuration [A]
L] pall scm @

Pre Steps

| Add prebuild step -

Build
Root POM pom.xml .ﬁ.
Goals and options .ﬁ.
Post Steps

O Run anly if build succeeds) Run only if build succeeds or is unstable @ Run regardless of build result

Should the post-build steps run only for successful builds, ete,

Execute Windows batch command .ﬁ.

Command | ¢d target\surefire-reports

for %%F IN (*.xml) DO copy %%F C:\Polarion\data\import-test-results
\elibrary\unit-jenkins\%BUILD _TAGS% %%F

See the list of available environment variables

Add post-build step

Build Settings

[E-rnail Motification 'ﬂ'

Post-build Actions

| Add post-build action ™ |

| Save || Anply |

Automated Test Execution with Polarion 1-7

Chapter 1:

Run external automated tests from Polarion

4. The final step in the process is to launch the job that runs the Jenkins build. Assuming you have
the necessary permissions, you can launch the job manually in the Monitor topic of Navigation.
Alternatively, you can wait for the Scheduler to run it according to the job described in Receive

test results, above.

1-8

POLARION

E-Library -

Iy

fi
d.

User
My Polarion

Horme

Specification

Feleases

FIEA Risk

Development

Testing

Wiork [tems

Diocuments &
Wil

Test Funs

Jobs

Refresh
Name

Irmport Elibrary Tests Results
Irmport Elibrary Tests Hesults
Irmport Elibrary Tests Results
Irmport Elibrary Tests Results

Live Plan Chart Lipdate

5 found, 5 loaded

Scheduled Johs
Execime now

MName

Remove Finished Jobs

show only running jobs

Show child jobs

?‘@jﬂmﬁ \{sﬂ'“’_'

Monitor

¥ Expand

Live Chihl

suspend DB History Creator
Resume DB History Creator
E-library Mightly Build
plan.job

update. resolvedindays field

Example 1 - Frequent Build

¥ Import Elibrary Tests Results
16 found, 16 loaded

Scope Worlker Started
default xUnitFilelmport 2012-08-10
default xlUnitFilelmport 2012-08-10
default sUnitFilelmport 2012-09-10
default slUnitFilelmport 2012-09-10
default update.plan 2012-09-10
Scope Cron Expression

system o047 ™ MOR-SAT

system ooag Y™ MON-FR

system o019 7 * MON-FRI

praoject:elibrary 001 2**

system oo1?*MON-SAT
project:elibrary - 001 7 % MOMN-5AT
project.examplel D05+ %7

system

For more information on jobs and scheduling, see the Monitor and Scheduler topics in Polarion's

Help.

Automated Test Execution with Polarion

This software and related documentation are proprietary to Siemens Product Lifecycle Management
Software Inc.

© 2019 Polarion AG.
Polarion is a registered trademark of Polarion AG. Polarion ALM, Polarion REQUIREMENTS, Polarion QA
and Polarion VARIANTS are trademarks or registered trademarks of Polarion AG.

Siemens and the Siemens logo are registered trademarks of Siemens AG. NX, Solid Edge, and

Teamcenter are trademarks or registered trademarks of Siemens Product Lifecycle Management

Software Inc. or their subsidiaries in the United States and in other countries. All other trademarks,
registered trademarks, or service marks belong to their respective holders.

© 2019 Polarion AG

	Contents
	Contents
	1. Run external automated tests from Polarion

